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ABSTRACT

An adjoint sensitivity analysis is conducted using the adjoint of the hyperspectral radiative transfer model
(RTM) that simulates the radiance spectrum from the Advanced Infrared Sounder (AIRS). It is shown,
both theoretically and numerically, that the height of the maximum sensitivity of radiance in a channel could
be higher or lower than the height of the maximum weighting function of that channel. It is shown that the
discrepancy between the two heights is determined by the vertical structures of the atmospheric thermo-
dynamic state. The sensitivity finds the level at which changes in temperature and/or moisture will have the
largest influence on the simulated brightness temperature (BT), and the maximum weighting function (WF)
height indicates the level where the model atmosphere contributes most significantly to the emission at the
top of the atmosphere. Based on the above findings, an adjoint method for forecast verification using AIRS
radiances is presented. In this method, model forecasts are first mapped into radiance space by an RTM so
that they can be compared directly with the observed radiance values. The adjoint sensitivity analysis results
are then used to connect the deviations of the model forecasts from observed radiances to the changes of
temperature and moisture variables in model space. This adjoint sensitivity based model verification pro-
vides useful information on forecast model performances based on indirect observations from satellites.

1. Introduction

Atmospheric infrared soundings from orbiting satel-
lites can provide valuable information regarding nu-
merous meteorological parameters including atmo-
spheric temperature and moisture profiles. Data from
numerous satellite sounders, including the High Reso-
lution Infrared Radiation Sounder (HIRS) and the Ad-
vanced Microwave Sounding Unit (AMSU), have led
to advances in weather forecasting (Derber and Wu
1998; Baker et al. 2005) by utilizing the data through
assimilation. However, whereas HIRS scans 20 spectral
channels, and AMSU collects data from 16 microwave
channels, the Atmospheric Infrared Sounder (AIRS)
carried on board NASA’s Aqua satellite is able to si-
multaneously scan 2378 spectral channels (Pagano et al.

2002), affording very high vertical resolution in AIRS
atmospheric retrievals (Chahine et al. 2001). AIRS data
have already led to improvements in weather forecast-
ing (McNally et al. 2006; Le Marshall et al. 2006) by
directly assimilating AIRS radiances. Another applica-
tion of AIRS data that takes advantage of its high spec-
tral resolution is the direct use of AIRS radiance ob-
servations at different channels for mesoscale forecast
verification, which is presented in this study.

Comparisons between simulated radiances and ob-
served values are routinely done at various operational
centers prior to assimilating the radiance data into their
respective forecast models (McNally et al. 2006; Le
Marshall et al. 2006). This is done for several reasons: 1)
to ensure that simulated radiances do not deviate sig-
nificantly from the observations to be assimilated in a
data assimilation system (a quality control procedure
done prior to data assimilation), 2) to ensure that values
of observational data are reasonable, 3) to monitor er-
rors in the background analysis fields, and 4) to diag-
nose biases in the radiative transfer model, observa-
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tions, and background analysis. In this paper, an adjoint
sensitivity method for forecast verification using AIRS
radiances is presented. The deviations of the simulated
radiances from observed radiances are used directly to
infer which background model variable at what vertical
level might have contributed most to the departures in
the radiances.

To conduct this model verification, multiple tools
need to be in place. First, to compare model forecasts
directly with AIRS radiances, a radiative transfer
model (RTM) must be used to map the forecasted
model variables to radiance space. Second, a method
must be devised to link errors in the radiance space
back to the aforementioned forecast model variable
space. Initially, one could use a priori information re-
garding the type of channel (carbon dioxide or water
vapor channel) and channel-specific weighting func-
tions (WFs) to link the simulated BT error back to the
forecast model. This is, however, not the best choice for
a model verification study. The WF only gives informa-
tion as to the relative contribution of each RTM level to
the emission at the top of the atmosphere for each
channel. It does not provide information about the
sensitivity of the BT calculation to changes in model
variables (i.e., temperature or moisture) at different
vertical levels. For studies requiring a linkage between
output-variable perturbations to input-variable pertur-
bations of a model operator (e.g., RTM in this case), it
is best to use the sensitivity results.

A sensitivity analysis allows one to quantify the im-
pact that certain atmospheric variables have on a se-
lected model response, which for this study is radiance,
or brightness temperature (BT). Traditional methods
derive the sensitivity of modeled radiance at a specified
channel by varying each of the input variables one at a
time. Not only is accuracy a concern in this forward
formulation of sensitivity, it is also highly inefficient
when dealing with the numerous channels afforded by
AIRS. A more efficient and accurate method for study-
ing sensitivity is the so-called adjoint method. The ad-
joint sensitivity analysis requires the adjoint of the ra-
diative transfer model, which allows simultaneous cal-
culation of the radiance’s sensitivity, at each channel, to
all input variables with only one run of the forward
RTM and one run of the adjoint RTM.

Adjoint sensitivity analysis has been conducted to
study the sensitivities of model forecasts to initial con-
ditions and/or physical parameters (Zou et al. 1993;
Zupanski 1995; Gelaro et al. 1998). In this study, the
relative sensitivity of satellite radiances to temperature
and moisture at different vertical levels (Amerault and
Zou 2003) is investigated for a hyperspectral sounder,
that is, AIRS. For the sensitivity study of AIRS data, a

visualization of the sensitivity results is demonstrated
that enables one to account for the thousands of chan-
nels in an efficient manner. In addition to this, a com-
parison study is done that illustrates and provides a
rationale for the differences in the vertical structures of
the sensitivity and the WFs determined by radiative
transmittances. This study outlines the basis of using
the sensitivity to provide the link between BT errors to
errors in model variables of a mesoscale forecast.

The following paper is constructed as follows: in sec-
tion 2 the selected RTM and its adjoint are introduced,
and an overview of the AIRS data and the selected test
case are presented. Section 3 highlights the mathemati-
cal formulation of the adjoint sensitivity analysis, its
results, and a comparison with RTM WFs. Section 3
also overviews the quality control methodology em-
ployed for this work. Section 4 follows with an overview
of the mesoscale forecast verification procedure and
results. Section 5 covers the conclusions and future
work.

2. The AIRS data, RTM, test cases, and forecast
models

a. The AIRS data

AIRS, one of the many instruments carried on board
the National Aeronautics and Space Administration’s
(NASA) Aqua satellite, is a hyperspectral infrared
sounder capable of collecting 2378 thermal infrared ra-
diance observations across a spectrum from 3.7 to 15.4
�m. The cross-track swath dimension is 1650 km. The
spatial resolution for AIRS is 13.5 km at nadir (Au-
mann et al. 2003).

AIRS level 1B radiance data are available in hierar-
chical data format (HDF) from the Goddard Earth Sci-
ences Data and Information Services Center (GES
DISC). AIRS data from each day are structured in
6-min swath packages known as granules. Since the
Aqua satellite is sun-synchronous, the data are avail-
able globally, twice daily at the same local times each
day. The level 1B radiance data consist of calibrated
radiances assigned to each wavenumber in the spec-
trum. The radiances are converted into BTs here with
the inverse of the Planck function. Noisy and/or pop-
ping channels (i.e., channels whose BT values “pop” to
high values suddenly without any gradual transition) as
specified by several onboard calibration tests (space
view test, onboard calibration cool-down test, etc.) are
removed using the quality control package available
with the AIRS radiance packages. For further informa-
tion regarding the AIRS instrument, see Pagano et al.
(2002).
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b. The radiative transfer model and its adjoint

The RTM selected for this work is the Stand-alone
AIRS Radiative Transfer Algorithm (SARTA; Strow
et al. 2003). SARTA calculates radiance and BT values
for two pixels each second (on an SGI Origin machine),
with errors near that of the AIRS instrument itself
(about 0.2 K at 250 K) (Strow et al. 2003). SARTA is
designed to calculate a simulated AIRS radiance spec-
trum as the convolution of the monochromatic radiance
with the AIRS spectral response function (SRF) for any
specified AIRS channel. The model does not have the
capability to resolve scattering effects, and as such con-
siders only four source terms: surface emission, atmo-
spheric emission, downwelling atmospheric emission
reflected by the surface, and reflected solar radiation.
The SARTA package includes an additional program
suite, known as kLAYERS, to interpolate input data
from N model levels to the 100 layers needed by
SARTA. Linear interpolation (on logP levels, where P
is pressure) is used by kLAYERS to convert input pro-
file data to 101 levels from the surface to 0.0050 hPa.
Then, kLAYERS converts atmospheric profiles at dis-
crete point levels onto 100 fixed integrated slab layers
used in SARTA. For those layers that are above the top
of the input data (in our case above 50 hPa), kLAYERS
merges a reference profile (based on the latitude and
time of year of the input profile) to fill in for missing
data.

The surface emissivity and reflectivity values are fed
into SARTA from a set of reference points (obtained
from the AIRS observation file). These reference emis-
sivity and reflectivity values are interpolated (or ex-
trapolated) onto the AIRS channel wavelengths. Inter-
polations are linear in wavelength. Problems remain
with the use of these values over land; this is addressed
later in section 4a. Details on the model’s radiative
transfer algorithm and how to calculate each term can
be found in Strow et al. (2003).

To formulate the adjoint of the forward RTM, the
RTM must first be linearized around a basic state (e.g.,
the nonlinear state) to obtain the so-called tangent lin-
ear RTM. The nonlinear RTM can be expressed as

Tb
� � H��x�, �1�

where H is the operator (RTM) with the input vector x
to produce T�

b (the brightness temperature at channel
�). The tangent linear model of (1) is simply

�Tb
� � H��x��x, �2�

where H� � �H� /�x is the tangent linear operator of
RTM producing the perturbed BT values (�T�

b) for a
given perturbation in input vector x (�x). The computer

program for the tangent linear RTM is obtained by
linearizing every line of the computer code that com-
poses the RTM by a sequence of differentiations with
respect to the input variables x and any variables that
are functions of x.

The adjoint RTM can be expressed as

x̂ � H�
T�x�T̂b

�, �3�

where HT
� is the transpose of H� and is called the ad-

joint operator, T̂�
b is the adjoint variable of BT, and x̂ is

the adjoint variables of x. For different applications of
the adjoint RTM, different values will be given to T̂�

b

(see section 3a). The computer program for the adjoint
RTM is based directly on the tangent linear RTM pro-
gram, realizing the transpose of the tangent linear
model. The sequence of operations and the input and
output in the tangent linear RTM is reversed for the
adjoint RTM. However, the basic state calculations
needed in the adjoint operator keep the same sequence
as in the tangent linear code.

The accuracy of the tangent linear RTM is verified
against the nonlinear RTM, and subsequently the ac-
curacy of the adjoint RTM is verified against the tan-
gent linear RTM. Both the tangent linear and adjoint
models have been deemed accurate within the precision
of the computer, in this case 13 digits on an SGI Origin.

c. A quality control procedure

Cloud contamination is a major problem when deal-
ing with infrared sounder data and when using an RTM
that does not account for cloud effects, such as
SARTA. Therefore, cloud-contaminated BTs must be
removed from consideration. To ensure that only high
quality data are being used for the verification of the
fifth-generation Pennsylvania State University–
National Center for Atmospheric Research Mesoscale
Model (MM5) forecasts, a quality control procedure
developed by Carrier et al. (2007) is applied. It imple-
ments a limited cloud-contaminated data removal
(LCCDR) algorithm to remove cloud-contaminated
BTs as well as those remaining observations that differ
significantly from the simulated BT values.

The LCCDR algorithm examines the weighting func-
tion profile for each AIRS channel, at each AIRS foot-
print, to determine a channel-dependent cutoff pres-
sure (COP) level, which is a level above which the emis-
sion is no less than 4⁄5 of the total value. The COP level
for each channel is then compared with the cloud-top
pressure from the Moderate Resolution Imaging Spec-
troradiometer (MODIS). If a channel’s COP level is
below the MODIS cloud top, that channel is discarded.
Finally, the biweight method (Lanzante 1996) is used to
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remove those remaining data points that deviate signifi-
cantly from simulated radiances in consideration of po-
tential error in the MODIS cloud-top estimates and in
the determination of the COP level. The biweight
method first calculates the biweight mean and the stan-
dard deviation, which are more resistant to outliers
than those calculated by the standard method. The bi-
weight mean and standard deviation are then used for
identification of outliers.

The results from this quality control procedure have
shown that many channels from cloudy fields of view
(FOVs) that would have otherwise been discarded are
retained. The error analysis also suggests that the data
retained from our algorithm possess the same (and at
times, better) error characteristics as those channels
from completely clear FOVs (Carrier et al. 2007).

d. Test case and forecast model

The test case involves a strong middle- and upper-
level moisture gradient associated with a cold front
over the southeastern United States on 11 July 2003.
This case was selected because of its simplicity, as there
is minimal cloudiness and no large-scale precipitation
over the southeastern United States during this time.
Figure 1 shows a Geostationary Operational Environ-
mental Satellite-12 (GOES-12) midlevel water vapor
image at 1200 UTC 11 July 2003. The midlevel moisture

gradient is visible within the region of interest (over the
southeastern United States).

Version 3 of the MM5 is used here (Dudhia 1993).
The 36-h forecast, initialized at 0000 UTC 11 July 2003,
has a domain centered over St. Louis, Missouri, with a
grid size of 150 � 150 � 35, a horizontal resolution of
20 km, and a model top at 50 hPa (Fig. 2). The Grell
cumulus convective scheme (Grell et al. 1995) and
Blackadar planetary boundary layer (Blackadar 1979)
are used in this forecast. The size of the forecast domain
is large enough to cover the southeastern United States
(the region of interest) while also overlapping a major-
ity of the AIRS pixels from two different swath times:
0747 UTC 11 July (AIRS granule 078) and 1847 UTC
11 July (AIRS granule 188). Granule 078 is a local
nighttime period, and the 8-h forecast is used for input
to SARTA; granule 188 is a local daytime period, and
the 19-h forecast is used as input to SARTA. AIRS
data from granule 078 and MM5/SARTA data from the
8-h forecast will be referred to as T1; AIRS data from
granule 188 and MM5/SARTA data from the 19-h fore-
cast will be referred to as T2. The spatial coverage of
both swaths is shown in Fig. 2.

3. Adjoint sensitivity study

When verifying model forecasts against AIRS radi-
ance observations, it is important to know which me-

FIG. 1. GOES-12 midlevel water vapor image from 1200 UTC 11 Jul 2003. Area of interest
is the southeastern United States and the midlevel moisture gradient present at this time.
Image courtesy of NCDC Satellite Browse Archive (information online at http://
www.ncdc.noaa.gov/oa/satellite/satellitedata.html.)
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teorological variable, at what level, has the greatest in-
fluence on the simulation of specific RTM spectral
channels. An adjoint sensitivity study of AIRS radi-
ances will provide such information based on the rela-
tive sensitivities of each RTM channel BT to each MM5
forecast variable (input to the RTM).

a. Formulation and results of the adjoint sensitivity
study

For a sensitivity study of BT, the response function is
simply defined as

R��x� � Tb
�. �4�

The adjoint RTM is used to first obtain the gradient of
R� with respect to the atmospheric variable x, �xR�, by
setting

T̂b
� �

�R�

�Tb
�

	 1 �5�

in (3). The resulting value after applying the adjoint
RTM (3) is the gradient x̂:

x̂ � �xR� . �6�

The sensitivity of the BT with respect to the input vec-
tor x can then be calculated according to the following
formula:

R�
sens � ��xR��T�x 	 �x̂�T�x. �7�

If there is a variation only in the lth component of x,
that is,

�x 	 �x l � �
0
···

�xl

···
0

�, �8�

the corresponding sensitivity can be written as Rsens
l
� �

(x̂)T�x l.
To compare the sensitivity of BT with both tempera-

ture and specific humidity at different vertical levels,
the following nondimensional relative sensitivity must
be used (Zou et al. 1993):

s�
l �

R�
sens
l

R�
��xl

x l �
1

	
x̂ lx l

R�

, �9�

where �x l � (0, . . . , �xl, . . . , 0)T is a perturbation vec-
tor where only the lth component of x is perturbed,

FIG. 2. MM5 forecast domain, for the MM5 forecast initialized at 0000 UTC 11 Jul 2003,
with a grid size of 150 � 150 � 35 with 20-km resolution (light gray region). AIRS scan swath
at 0747 UTC 11 Jul 2003 (granule 078) is in dark gray shading. AIRS scan swath at 1847 UTC
11 Jul 2003 (granule 188) is in medium gray shading.
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Rsens
l
� � (x̂)T�x l is the sensitivity resulting from per-

turbation �x l, and x̂ l is the gradient of the response
function R� with respect to the lth input variable of x.
The relative sensitivity

s� � �
s�

1

s�
2

···
s�

N
� �10�

is nondimensional and is found by a vector multiplica-
tion of the adjoint variable x̂ and input variable x of R�,
divided by the response function [see (9)].

The magnitude of the relative sensitivity signifies the
importance of each input variable for each spectral
channel. To judge whether the radiance is more sensi-
tive to temperature or specific humidity, one can simply
plot the relative sensitivity s�. The relative sensitivity of
the BT to atmospheric temperature (RS-T) and specific
humidity (RS-Q) at specific vertical levels can also be
investigated. This is particularly useful when trying to

quantify which channels to use for data assimilation or
when trying to investigate error in the model response
and/or input variables using AIRS radiance observa-
tions.

The sign of the relative sensitivity is also important. It
signifies how the input parameter can affect the RTM
response. For instance, positive (negative) sensitivity of
BT suggests that increasing (decreasing) the value of
the input variable will lead to an increase (decrease) in
the BT value.

Figure 3 shows the vertical profile of the temperature
and mixing ratio used as the input field (x) for the WF
and adjoint sensitivity calculations. This profile is at an
MM5 grid point (33.2°N, 86.8°W) located in southern
Alabama. This profile indicates somewhat dry condi-
tions near the surface until about 900 hPa when the
sounding becomes wetter.

Figure 4 shows the maximum values of RS-T (brown,
values on left y axis) and RS-Q (black, values on right
y axis) for the first 1864 AIRS channels. The maximum
value of the RS-T at each channel is positive, whereas
the maximum RS-Q values are all negative, as would be

FIG. 3. MM5 temperature (red) and mixing ratio (blue) vertical profiles from the clear-sky
domain point (33.2°N, 86.8°W) used for example adjoint sensitivity study. Green wind barbs
show wind speed and direction at each pressure level. Data are from T1 (8-h MM5 forecast
initialized at 0000 UTC 11 Jul 2003).
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expected. The magnitude of the RS-T is higher than
that for RS-Q, indicating that the BT calculation is most
sensitive to changes in the temperature variable than in
the moisture variable, not only for the so-called carbon
dioxide channels (� � 13.0 �m), but also for the water
vapor channels as well (�  9.2 �m). It is also apparent
that the RS-Q values in the water vapor channels are
larger than those in other channels, indicating the in-
creased importance of water vapor to the BTs in this
spectral range. Overall, this result indicates that the simu-
lated BT values would be impacted more by a change in
the temperature than they would by a change in the
moisture for the entire spectrum, and more by a change
in the water vapor channels than in other channels.

To illustrate the vertical levels at which the relative
sensitivity is highest, we show in Figs. 5–7 the RS-T [(b)
panels] and RS-Q profiles [(c) panels] for three AIRS
spectral ranges: 15.39–13.22 �m, a carbon dioxide band
(Fig. 5); 12.34–8.79 �m, a window channel band (Fig.
6); and 8.22–6.20 �m, a water vapor band (Fig. 7). RS-T
values have been normalized and the RS-Q values have
been scaled up by 33%. The vertical levels are shown in
log-P form on the vertical axis and the AIRS channel
(in �m) on the horizontal axis. The RS-Q values for the
channels in this range are very low, indicating their
relatively weak contribution to the radiance calcula-
tions for the carbon dioxide channels.

Figure 6 shows the comparison for the window chan-
nel band. Here, the peak RS-T values lie near the sur-
face (1042 hPa), but for each channel the sensitivity
remains high, even slightly above the surface layer. This
range of channels also exhibits high sensitivity to the
surface skin temperature variable (RS-TG; Fig. 6, bot-
tom panel). The RS-Q values for this range are still
rather low, as expected for window channels. Also,
there is a slight increase in RS-T values for atmospheric
levels above 500 hPa between 9.78–9.27 �m in response
to the ozone band. The RS-TG value is higher for each
window channel than the RS-T value is by at least an
order of magnitude (not shown). For example, the peak
RS-T value for channel 800 (10.85 �m) is 0.262155,
whereas the RS-TG value is 2.83521.

Figure 7 shows the comparison for the water vapor
band. Here, the structure of the RS-T and RS-Q values
match quite closely at each channel. Relatively high
RS-Q values exist in this band, suggesting that the spe-
cific humidity values are relatively important for these
channels, as would be expected. However, the sensitiv-
ity analysis suggests that the temperature parameter is
also relatively important to the radiance calculation for
the water vapor band. It is therefore important to con-
sider both the temperature channels and water vapor
channels when attempting to obtain both profiles of
temperature and moisture from AIRS BT data.

FIG. 4. Maximum sensitivity values at each AIRS wavelength for T1 sensitivity analysis
(using 8-h MM5 forecast initialized at 0000 UTC 11 Jul 2003). The maximum RTM relative
sensitivity to atmospheric temperature (RS-T ) is in brown (values on left y axis), and maxi-
mum RTM sensitivity to specific humidity (RS-Q) is in black (values on right y axis). Values
are dimensionless.
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FIG. 5. RTM-normalized (a) WFs and (b) BT sensitivities to atmospheric temperature, and
(c) specific humidity for the AIRS spectral range between 15.39 and 13.22 �m for T1 sensi-
tivity analysis (using MM5 8-h forecast initialized at 0000 UTC 11 Jul 2003). Pressure levels are
shown along the vertical axis, and AIRS wavelengths are shown along the horizontal axis; WFs
and sensitivities are normalized.
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b. RTM weighting functions

The WF quantifies the contribution of emissions
from each atmospheric level and the total emission at

the top of the atmosphere for each channel. Therefore,
the height of the maximum WF of radiance in a par-
ticular channel provides information on which atmo-
spheric layer contributes the most to the measured ra-

FIG. 6. (a)–(c) As in Fig. 5, but for spectral range 12.34–8.79 �m. (d) The
sensitivity of BT to MM5 surface skin temperature variable (nondimensional rela-
tive sensitivity is shown along the y axis; AIRS channel is shown along the x axis).
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diance. The broadness of the WF reflects the thickness
of the atmospheric layer contributing most significantly
to the measured radiance. On the other hand, as dis-
cussed above, the relative sensitivity provides informa-
tion about which variable and at what height the radi-
ance is most sensitive. Is the height at which BT is most

sensitive to temperature the same as that for specific
humidity? Is the maximum WF height the same as the
height where the relative sensitivity is highest? These
are important questions relevant to many applications
of AIRS radiance, such as targeted observations, data
assimilation, and forecast verification.

FIG. 7. As in Fig. 5, but for spectral range 8.22–6.20 �m.
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Since the WF at a specific vertical level is represen-
tative of the amount of radiation emission at that level,
which itself is a function of atmospheric temperature
and moisture at, and above, that level, the BT can be
approximately expressed as a weighted mean of the
Planck function [B(T)]:

R� 	 Tb
� � �

l

wl
��T1, T2, . . . , Tl, q1, q2, . . . , ql�B�Tl�.

�11�

Variations in WF values from one level to another are
much larger than the variations in the values of B(T)
are from one level to another. Therefore, the level
where the WF value is the largest is the level at which
the atmosphere contributes the most to the total radia-
tion of that channel. However, the relative sensitivity
finds the height where perturbations made to the most
sensitive variable contribute the most to the first-order
variation of BT:

R�
sens � �

k
��wk

�B�Tk� � wk
��B�Tk��. �12�

In the second term in (12) the role of WF in the first-
order variation of BT with respect to temperature per-
turbation, �Tl (l � 1, 2, . . . , L vertical levels), is similar
to its role in BT with respect to background tempera-
ture, Tl (l � 1, 2, . . . , L) [see (8)]. It is the first term in
(12) that might contribute to a discrepancy between the
maximum WF height and the height where the relative
sensitivity is highest. For example, the sensitivity due to
temperature perturbation at the kth level will be

R�
sens,l � �wl

�
dB

dT
�

�wl
�

�T
B�Tl���Tl . �13�

The relative sensitivity will be

s�
sens,l �

�wl
�

dB

dT
�

�wl
�

�T
B�Tl��Tl

Tb
�

�

wl
�

dB

dT
Tl �

�wl
�

�T
B�Tl�Tl

Tb
�

. �14�

Based on the first term in (14), the height of the maxi-
mum sensitivity could be rendered lower (higher) than
the height of the maximum WF if the temperature de-
creases (increases) with height near the maximum WF
height. Also, since

�wl
�

�T �
�0 above the WF maximum height

�0 at the WF maximum height

�0 below the WF maximum height

, �15�

the height of the maximum sensitivity could be ren-
dered higher than the maximum WF height because of
the contribution from the second term in (14). In the
following, it is shown that the height at which BT is
most sensitive to temperature could be different from
that for specific humidity, and the maximum WF height
could be different from the height where the relative
sensitivity is highest.

Figure 8 shows the vertical heights of the maximum
WF, RS-T, and RS-Q peaks for three AIRS spectral
ranges: 14.83–14.15 �m, an upper-level carbon dioxide
band (Fig. 8a); 14.14–13.59 �m, a midlevel carbon di-
oxide band (Fig. 8b); and 7.37–7.08 �m, a water vapor
band (Fig. 8c). Clearly, the peak WF, RS-T, and RS-Q
values do not always lie at the same atmospheric level.
In fact, it appears that the peak RS-T value is vertically
higher in the atmosphere than the WF peak for those
channels whose maximum emission is above the tropo-
pause (�200 hPa). Conversely, the peak RS-T value
falls vertically below that for the WF at channels with
peak emissions below 200 hPa. It is clear that those
channels whose peak RS-T values lie vertically above
the peak WF values have the maximum emission from
above the tropopause within a region where the tem-
perature increases with height. This is consistent with
the theoretical prediction from (14).

The relationship between the vertical shift of RS-T
levels from the peak WF and the sign of the vertical
temperature gradient is further confirmed in Fig. 9 for
all AIRS channels that exhibit a shift between the peak
WF and RS-T levels. Figure 9 shows the relationship
between the vertical shift between the peak WF and
RS-T levels and the sign of the vertical temperature
gradient at the level of the peak WF (the zero-value
lines are shown in gray; negative vertical shift value
represents an upward sensitivity shift relative to the WF
profile). If the vertical temperature gradient is negative
at the peak WF height, then the RS-T shift is downward
(since the �W�

l /�T term is negative in that direction); on
the other hand, if the vertical temperature gradient is
positive at the peak WF height, then the RS-T shift is
upward (since the �W�

l /�T term is negative in that di-
rection). Figure 10 shows the relationship between the
magnitude of the vertical shift in RS-T and the “broad-
ness” of the WF profile (which is found to control the
magnitude of the vertical shift). Open circles indicate
those channels that exhibit an upward shift in the RS-T
profile; closed circles indicate those channels that ex-
hibit a downward shift in the RS-T profile. The broad-
ness of the WF profile is defined by the thickness (in
hPa) between the peak WF pressure level and the last
pressure level with a WF value at or above 0.9, in the
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direction of the RS-T shift. The channels that have the
large shifts (�100 hPa) of the peak RS-T height from
the maximum WF height are the midlevel carbon diox-
ide channels due to the broadness of these channels
(not shown). “Upward-shifting” channels exhibit small
shifts (open circles), since these channels, being in the
stratosphere, are not very broad.

It has been shown that the vertical level where

changes in the model state contribute mostly to the
changes in the calculated radiance can be different from
that suggested by the WF profile. This has direct appli-
cations for inferring which variable, at what level, might
result in a model forecast error when radiance data is
used for forecast verification.

FIG. 10. Difference in pressure levels of the peak RTM WF and
peak RTM RS-T (vertical shift, y axis) and the “broadness” of the
RTM WF in the direction of the shift. Open circles indicate those
channels that exhibit an upward RS-T peak shift (relative to the
RTM WF peak). Closed circles indicate those channels that ex-
hibit a downward RS-T peak shift (relative to the RTM WF peak).
Data are from the T1 sensitivity analysis (using 8-h MM5 forecast
initialized at 0000 UTC 11 Jul 2003).

FIG. 8. Vertical levels of maximum BT sensitivity to atmo-
spheric temperature (brown) and moisture (dashed) as well as the
maximum WF height (black) for T1 (using 8-h MM5 forecast
initialized at 0000 UTC 11 Jul 2003). Pressure level (hPa) is shown
along the vertical axis; spectral channel (�m) is shown along the
horizontal axis. Shown are spectral ranges between (a) 14.83 and
14.15 �m (carbon dioxide temperature channels), (b) 14.15 and
13.59 �m (window channels), and (c) 7.37 and 7.08 �m (water
vapor channels).

FIG. 9. Difference in pressure levels of the peak RTM WF and
peak RTM RS-T (vertical shift) and the corresponding d(T )/dp
term at the level of peak RTM WF for G078-T2. Data shown here
are from the same BT data used in the T1 sensitivity analysis
(using 8-h MM5 forecast initialized at 0000 UTC 11 Jul 2003).
Channels shown here are for all of those with peak WFs above 800
hPa (some data points overlap).
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4. Evaluation of a mesoscale forecast in light of
the adjoint sensitivity results

Forecast verification using AIRS radiance data

Model-simulated and AIRS-observed BTs are com-
pared to isolate and identify probable errors in the fore-
cast model. The simulated BT values are calculated
from the temperature and specific humidity forecasted
by the model. The question is, how do we link differ-
ences found in radiance space to model variable space?
In the following, we will show that the maximum rela-
tive sensitivity of radiance provides a way to do this.

To evaluate the MM5 forecast of temperature and
specific humidity using AIRS BT data, the data are
divided into two groups: (i) the carbon dioxide and
surface channels and (ii) the water vapor channels. The
root-mean-square (RMS) error and correlation calcu-
lated in BT space over the entire overlapping domain of
AIRS data and the forecast model are calculated and
presented as a vertical profile corresponding to the
heights (in hPa) of the maximum relative sensitivity of

BTs to temperature and specific humidity for the two
groups of BT data, respectively (Figs. 11 and 12).
Cloud-contaminated data and outliers are removed a
priori. A low-pass (boxcar) filter, applied in frequency
space, is applied to the AIRS observations in order to
reduce the observational noise. Since the AIRS obser-
vational and RTM errors (�0.5 K for a 250-K scene)
are known (Pagano et al. 2002; Strow et al. 2003), the
error signal due to the MM5 forecast is conservatively
set for RMS errors above 2.0 K.

Figures 11 and 12 show the RMS errors (left panels)
and correlation coefficients (right panels) of BTs at dif-
ferent AIRS channels for T1 valid at 0800 UTC 11 July
2003 and for T2 valid at 1900 UTC 11 July 2003, re-
spectively. Figures 11a,b and 12a,b include all of the
carbon dioxide and surface channels and Figs. 11c,d and
12c,d include the water vapor channels. The BT data in
the carbon dioxide and surface channels have been
sorted by their corresponding heights (hPa) of the
maximum relative sensitivity of BTs to temperature
(Figs. 11a,c and 12a,c), and the BT data in the water

FIG. 11. (a), (c) RMS error and (b), (d) correlation coefficient of the simulated BTs using the MM5 forecast and AIRS data from T1
(8-h forecast). Here, (a), (b) show all the carbon dioxide and surface channels, and (c), (d) show water vapor channels. Channels are
organized by (top) the maximum BT sensitivity to atmospheric temperature and (bottom) the maximum BT sensitivity to specific
humidity.

APRIL 2008 C A R R I E R E T A L . 1339



vapor channels are sorted by the vertical heights of the
maximum relative sensitivity of BTs to specific humid-
ity (Figs. 11b,d and 12b,d). Since these channels have
not been arranged by wavelength, Figs. 13 and 14 show
the corresponding wavelengths (Fig. 13) and observed
mean brightness temperatures (Fig. 14) of all data used
in Figs. 11 and 12. Figure 13 indicates which set of
channels is used in the error plots in Figs. 11 and 12.
Channels whose peak sensitivity (RS-T and RS-Q) val-
ues are located in the higher atmosphere have, in gen-
eral, lower BTs (Fig. 14).

Examining the carbon dioxide channels for RMS er-
ror (Figs. 11a and 12a), one can see that the RMS error
is below 1 K. Figure 12a shows a slightly elevated near-
surface channel error, which is most likely due to errors
in surface emissivity or other surface effects (i.e., error
in MM5 model surface skin temperature), or a combi-
nation of both. For those near-surface channels, or for
channels with a significant surface contribution, it is
rather difficult to separate the forecast model error
from total error, since errors in the RTM could be sig-
nificant because of errors in the specification of the
surface state (e.g., surface emissivity and reflectivity)

during overland scenarios (McNally et al. 2006). For
this reason it is best to include only those channels that
have little or no surface contribution to overland FOVs
for forecast verification purposes. In any case, the error
associated with carbon dioxide channels above the sur-
face for both cases is relatively low (Figs. 11a and 12a),
indicating that the MM5 temperature forecast is closely
approximating the atmospheric state depicted by the
AIRS observations. The error associated with water
vapor channels is relatively low (below 1 K) below 500
hPa (Figs. 11c and 12c). Between 200 and 400 hPa,
however, an increase in RMS error with height is ob-
served, with values approaching 2.5 K at 200 hPa for T1
(nighttime, an 8-h forecast) and 3.5 K for T2 (daytime,
an 18-h forecast). This indicates a problem with the
MM5 forecasts in the upper-tropospheric moisture
fields associated with this middle- and upper-level
moisture gradient case, which is discussed in more de-
tail later (Figs. 16–18).

The correlation coefficients for the carbon dioxide
and window channels for the two cases (Figs. 11b and
12b) show a similar pattern where the correlation in the
upper levels (200 hPa) is relatively low (0.9), fol-

FIG. 12. As in Fig. 11, but for the MM5 forecast and AIRS data from T2 (18-h forecast).
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lowed by a stretch of channels (with peak RS-T be-
tween 200 and 800 hPa) whose correlations are near or
above 0.9. For those channels with a peak RS-T near
the surface in T2, the correlation drops off slightly,
likely due to the influence of surface skin temperature

error in MM5 and/or RTM emissivity error. The plot-
ted correlations for the water vapor channels are rela-
tively low for those channels whose peak RS-Q values
are between 200 and 400 hPa (Figs. 11d and 12d). These
results suggest that the MM5 is not simulating the layer

FIG. 13. (a) Peak RS-T pressure levels for the carbon dioxide channels and (b) peak RS-Q
pressure levels for the water vapor channels. Channels in (a) are used for the statistical
analysis shown in Figs. 11a,b and 12a,b. Channels in (b) are used for the statistical analysis
shown in Figs. 11c,d and 12c,d. Data are from the T1 MM5/SARTA simulation (using an 8-h
MM5 forecast initialized at 0000 UTC 11 Jul 2003).

APRIL 2008 C A R R I E R E T A L . 1341



above 400 hPa as well as the layer between 400 and
900 hPa.

In the following, three channels have been selected
to examine model performances in capturing the spatial
distributions of BTs observed by AIRS observations:
an upper-level CO2 channel (channel 209, 14.09 �m)

with the maximum sensitivity located at 330 hPa, a
middle-level water vapor channel (channel 1583, 7.13
�m) with the maximum sensitivity located at 600 hPa,
and an upper-level water vapor channel (channel 1752,
6.57 �m) with the maximum sensitivity located at 310
hPa (note: the qualitative description of “upper” or

FIG. 14. BTs for (a) carbon dioxide channels (arranged by peak RS-T pressure level) and (b)
water vapor channels (arranged by peak RS-Q pressure level). Channels in (a) are used for the
statistical analysis shown in Figs. 11a,b and 12a,b. Channels in (b) are used for the statistical
analysis shown in Figs. 11c,d and 12c,d. Data are from the T1 MM5/SARTA simulation (using
an 8-h MM5 forecast initialized at 0000 UTC 11 Jul 2003).
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“lower” channels is relative to the MM5’s model do-
main, not the AIRS instrument). Figure 15a displays
the AIRS BTs and Figure 15b shows the MM5/SARTA
BTs for channel 209 in the T1 case. Channel 209 is
shown here as an example of a carbon dioxide channel,
with peak emission within the 300–500-hPa region, that
does not exhibit high error levels. The white regions
within the BT plots indicate those domain points
deemed cloudy for this channel by the LCCDR algo-
rithm and thus have been removed from consideration.

The overall structure of the simulated BT field is in
good agreement with the observations as well as the
magnitude of the temperatures. Since this channel is
most sensitive to MM5 temperature, it is reasonable to
assume that the MM5 temperature profile (around the
330-hPa level) is in good agreement with the actual
temperature profile for T1. In fact, the error for this
channel for both T1 and T2 is smaller than 1.0 K. It can
be shown that all carbon dioxide channels with peak
RS-T within the 300–500-hPa region exhibit similar

FIG. 15. Clear-channel BT for carbon dioxide channel
209 (14.10 �m) at time period T1 for (a) AIRS-observed
BT (0747 UTC 11 Jul 2003), (b) MM5/SARTA-simulated
BT (MM5 8-h forecast, initialized at 0000 UTC 11 Jul
2003), and (c) the BT difference (observation 
 model
simulation).
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RMS error distributions as that of channel 209 (figures
omitted).

Figure 16a shows the spatial BT field for channel
1583 from AIRS and Fig. 16b the MM5/SARTA for T1.
This channel is a water vapor channel most sensitive to
water vapor and temperature near 600 hPa. The simu-
lated BT field does well at capturing the large-scale
pattern of the AIRS observations but not so well in
estimating the exact position and extent of the moisture
gradient associated with the cold front and the cross-

frontal gradients features. The midlevel moisture gra-
dient associated with a cold front is visible in this chan-
nel as a sharp BT gradient cutting across the eastern
United States from western Pennsylvania to central
Texas. This gradient is visible in this channel because of
the effects of water vapor on atmospheric radiance. The
greater amount of water vapor in this region leads to a
greater absorption and a smaller transmission and thus
lower BT values. There appears to be some disagree-
ment between the simulated BTs and the observations

FIG. 16. As in Fig. 15, but for water vapor channel 1583
(7.13 �m).
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regarding the magnitude of the atmospheric drying (in-
dicated by the warmer BTs) and the moisture ahead of
the front (indicated by the cooler BTs over the eastern
United States). The simulated BTs are cooler behind
the cold front near the state of Illinois (circled in black)
than in the observations; conversely, the simulated BTs
are warmer ahead of the cold front over Alabama and
Mississippi (boxed in black) than in the observations.
This suggests that the MM5 predicted a weaker middle-

level moisture gradient, too-moist conditions behind
the gradient, and too-dry conditions ahead.

Figure 17 shows the spatial BT field for another wa-
ter vapor channel (channel 1752) with the maximum
sensitivity located near 310 hPa. This channel is an ex-
ample of one of the upper-level water vapor channels
that exhibit large RMS errors as shown in Fig. 11b. As
can be seen here, the simulated BT field barely captures
the observed horizontal structure and not at all the

FIG. 17. As in Fig. 15, but for water vapor channel 1752
(6.57 �m).
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magnitude. The simulated BT field does capture a gra-
dient-like feature (warmer BTs across the Ohio River
valley, with slightly colder temperatures toward the At-
lantic seaboard), but the BT difference across the gra-
dient is much smaller than those seen in the observa-
tions. It appears that the simulated BT field is the result
of the MM5 seriously underpredicting the strength of
the moisture gradient at the upper levels, suggesting
that the forecast model may be trying to keep the mois-
ture gradient primarily as a midlevel event, and the
AIRS observations indicate a much deeper event—a
middle- and upper-level event.

To verify the above statement, the vertical structure
of the moisture gradient is examined in BT space using
the RTM simulation and the AIRS observations. Fig-
ure 18 compares the vertical structure of the moisture

gradient along a line cutting across the cold front (see
Fig. 17a). Figure 18a shows the AIRS-observed BTs
whereas Fig. 18b shows the differences between AIRS-
observed and model-simulated BTs. All water vapor
channels from the AIRS spectrum are used and have
been arranged by their corresponding peak RS-Q pres-
sure level at each point. Red-shaded regions indicate
warm BTs, whereas green-shaded regions indicate
cooler BTs. Warmer BTs are indicative of more trans-
mission and therefore drier air, while cooler BTs rep-
resent less transmission and therefore more moisture.
Between 87° and 98°W (Fig. 18a), the data indicate a
deeper layer of warmer BTs than for those regions east
of 87°W; this is the BT gradient discussed previously.
This feature is not captured by the model forecast prop-
erly (Fig. 18b). Also, the depth of the warmer BTs

FIG. 18. The BT cross section (A–B line shown in Fig. 17a) with each water vapor channel arranged vertically by peak RS-Q pressure
level: (a) AIRS-observed BT data from T1 (granule 078 at 0747 UTC 11 Jul 2003) and panel (b) differences between AIRS-observed
and MM5/SARTA-simulated BTs (observation 
 model simulation).
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(�270 K) is deeper in the AIRS observations than in
the simulated BT field, with the observed BTs being
warmer, especially in the upper troposphere, than the
corresponding simulated BTs west of 87°W. This indi-
cates that the MM5 is keeping the upper-level atmo-
sphere too moist, which is consistent with our previous
findings. Similar results are obtained when comparing
the spatial distributions of the MM5 19-h forecast valid
at 1900 UTC 11 July 2003 (T2) with AIRS observations
(not shown).

It is emphasized that the proposed approach could be
used to infer how well the model-forecasted tempera-
ture and/or moisture profiles approximate the observed
ones at the model resolution, and at what level(s) the
model is doing poorly for which variable(s) based on
the fitting of radiances. It cannot be used to determine
if the real temperature profile is similar to that from the
model based on the fitting of radiances. It is possible
that the model does not capture all vertical structures
and yet the radiance verification looks good because of
the relatively broad sensitivity profiles.

5. Summary and conclusions

An adjoint sensitivity study is conducted for all AIRS
channels to obtain the vertical structures of their rela-
tive sensitivities. The relative sensitivity ranks the rela-
tive importance of changes in the temperature and
moisture fields at various vertical levels to the simu-
lated radiance values. In other words, the magnitudes
of the relative sensitivity indicate at which level changes
in temperature and/or moisture will have the largest
influence on the simulated values of BT. On the other
hand, the vertical structure of WF indicate at which
level the model atmosphere (whose state is defined by
temperature and/or moisture) contributes to the emis-
sion at the top of the atmosphere most significantly. It
is shown that the level of the peak RS-T value for a
given channel could be above or below the maximum
WF height. This vertical shift is primarily controlled by
the vertical atmospheric temperature structure and the
broadness of the WFs. If the peak WF is within a region
where the temperature is increasing (decreasing) with
height, the corresponding RS-T profile will be shifted
above (below) the WF profile. The amount of shift is
controlled by the broadness of the WF profile in the
direction of the shift. For example, if the WF profile is
broad (narrow) and has multiple (few) pressure levels
of WF � 0.9 in the direction of the shift, the shift will be
large (small).

Having illustrated the differences of the vertical
structures of sensitivity and WF, the sensitivity results
are chosen as a useful input for a forecast verification

using AIRS observations. It has been shown that useful
conclusions on model performance can be drawn from
comparing model forecasts with AIRS radiances under
the guidance of adjoint sensitivity. Through a case
study, we are able to show that the MM5 does a fine job
of predicting the atmospheric temperature of a case
characterized by a middle- and upper-level moisture
gradient except during the daytime near the surface.
Nonetheless, the model has greater difficulty with the
moisture forecast, especially in the upper levels (400
hPa).

The above adjoint-based forecast verification
method provides one with an excellent tool to utilize
indirect satellite observations to infer possible errors in
forecast fields. More case studies will be carried out.
The error signal of the MM5 forecasts found by such an
approach will be used for channel selection, targeted
observations, and construction of a background error
covariance matrix. These applications are being ex-
plored and results will be discussed in future papers.
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